Dental Clinical Policy Bulletins (2024)

Number: 019
(Revised)

Subject: Temporomandibular Disorders

Reviewed: September 23, 2013

Important note

This Clinical Policy Bulletin expresses our determination of whether certain services or supplies are medically necessary. We have reached these conclusions based on a review of currently available clinical information including:

  • Clinical outcome studies in the peer-reviewed published medical and dental literature
  • Regulatory status of the technology
  • Evidence-based guidelines of public health and health research agencies
  • Evidence-based guidelines and positions of leading national health professional organizations
  • Views of physicians and dentists practicing in relevant clinical areas
  • Other relevant factors

We expressly reserve the right to revise these conclusions as clinical information changes, and welcome further relevant information.

Each benefits plan defines which services are covered, excluded and subject to dollar caps or other limits. Members and their dentists will need to consult the member's benefits plan to determine if any exclusions or other benefits limitations apply to this service or supply. The conclusion that a particular service or supply is medically necessary does not guarantee that this service or supply is covered (that is, will be paid for by Aetna) for a particular member. The member's benefits plan determines coverage. Some plans exclude coverage for services or supplies that we consider medically necessary. If there is a discrepancy between this policy and a member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a state, the federal government or CMS for Medicare and Medicaid members.

Policy:

Notes: Most Aetna HMO plans exclude coverage for treatment of temporomandibular disorders (TMD) and temporomandibular joint (TMJ) dysfunction, and may also exclude coverage for other services described in this bulletin (for example, nonsurgical management) The plan determines the scope of coverage. Please check benefit plan descriptions for details.

For plans that cover treatment of TMD and TMJ dysfunction, requests for TMJ surgery require review by Aetna's Oral and Maxillofacial Surgery patient management unit. Reviews must include submission of a problem-specific history (that is, Aetna Temporomandibular Disorder Questionnaire) and physical examination, TMJ radiographs / diagnostic imaging reports, patient records reflecting a complete history of three to six months of nonsurgical management (describing the nature of the nonsurgical treatment, the results, and the specific findings associated with that treatment), and the proposed treatment plan. Aetna will notify the provider of the coverage decision after review of all pertinent data.

  1. Non-Surgical Management

  2. Comprehensive non-surgical management of TMJ/TMD includes all of the following, unless contraindicated:
    1. Reversible Intraoral Appliances: (that is, occlusal orthopedic appliances-orthotics, occlusal splints, bite appliances/planes/splints, mandibular occlusal repositioning appliances [MORAs])

      Reversible intraoral appliances may be considered medically necessary in selected cases only when there is evidence of clinically significant masticatory impairment with documented pain and/or loss of function.Prolonged (greater than six months) application of TMD/J intraoral appliances is not considered medically necessary unless, upon individual case review, documentation is provided that supports prolonged intraoral appliance use.

      Note: Appliances for bruxism are typically excluded under Aetna medical plans (please check benefit plan descriptions), but may be covered under dental plans. Only one oral splint or appliance is considered medically necessary for TMD/TMJ therapy.

      For plans that cover intraoral appliances, adjustments of intraoral appliances performed within six months of initial appliance therapy are considered medically necessary, while adjustments performed after six months are subject to review to determine necessity and appropriateness. More than four adjustments or adjustments that are done more than one year after placement of the initial appliance are subject to review.

      Note: Replacement of a lost, missing or stolen intraoral appliance is not covered. Intra-oral appliances for the treatment of headaches or trigeminal neuralgia are considered experimental and investigational, as there is insufficient data on the effectiveness of this therapy. See CPB 688 -- Intra-oral Appliances for Headaches and Trigeminal Neuralgia.
    2. Physical Therapy:

      Aetna considers physical therapy to be a medically necessary conservative method of TMD/TMJ treatment. Therapy may include repetitive active or passive jaw exercises, thermal modalities, manipulation, vapor coolant spray-and-stretch technique, and electrogalvanic stimulation.For manipulation under anesthesia for TMD/TMJ, see CPB 0204 - Manipulation Under Anesthesia.

    3. Pharmacological Management:

      Non-opiate analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are considered medically necessary for mild-to-moderate inflammatory conditions and pain. Low-dosage tricyclic antidepressants (for example, amitriptyline) are considered medically necessary for treatment of chronic pain, sleep disturbance and nocturnal bruxism. Adjuvant pharmacologic therapies, including anticonvulsants, membrane stabilizers and sympatholytic agents, are considered medically necessary for unremitting TMJ pain. Opiate analgesics, corticosteroids, anxiolytics and muscle relaxants are considered medically necessary in refractory pain.

    4. Relaxation Therapy and Cognitive Behavioral Therapy (CBT):

      Aetna considers relaxation therapy, electromyography (EMG) biofeedback and cognitive behavioral therapy medically necessary for treatment of TMJ/TMD.

      Relaxation therapy, EMG biofeedback, and cognitive behavioral therapy are considered medically necessary in chronic headaches and insomnia, which are frequently associated with TMD/TMJ conditions. The above therapies may be considered medically necessary in treating these conditions as well. Treatment in multidisciplinary pain centers may be considered medically necessary in those few individuals who have been unresponsive to less comprehensive interventions. See CPB 237 - Chronic Pain Programs.

    5. Acupuncture, Dry Needling and Trigger Point Injections

      [Note :Some plans limit coverage of acupuncture only when used in lieu of surgical anesthesia. Please check plan benefits descriptions for details. See CPB 135 - Acupuncture.] Aetna considers acupuncture, dry needling, and trigger-point injections medically necessary for persons with temporomandibular pain. For acute pain, generally two visits per week for two weeks are considered medically necessary. Additional treatment is considered medically necessary when pain persists and further improvement is expected.

    6. Manipulation for reduction of fracture or dislocation of the TMJ is considered medically necessary.
  3. Surgical Procedures:

    Surgical procedures include therapeutic arthroscopy, arthrocentesis, condylotomy/eminectomy, modified condylotomy, arthroplasty, and joint reconstruction using autogenous or alloplastic materials. In general, the least invasive appropriate surgical treatments should be attempted prior to progression to more complicated surgeries. Note: All TMJ surgical precertification requests or claims are be reviewed by the Aetna Oral and Maxillofacial Surgery (OMS) Patient Management Unit.

    1. Manipulation for reduction of fracture or dislocation of the TMJ is considered medically necessary. TMJ surgery may be considered medically necessary in cases where there is conclusive evidence that severe pain or functional disability is produced by an intracapsular condition, confirmed by MRI, CT or arthroscopy, that has not responded to physical therapy, analgesics, and oral appliances (unless the patient is unable to open mouth wide enough) and surgery is considered to be the only remaining option. In certain cases (for example, bony ankylosis and failed TMJ total joint prosthetic implants) that require immediate surgical intervention, surgery may be considered medically necessary without prior nonsurgical management. Note: All requests for surgery must include documentation that all nonsurgical therapies noted above have been exhausted. Patients with chronic head and neck pain may be candidates for chronic pain assessment. Surgical procedures include arthrocentesis, arthroscopy, condylotomy/eminectomy, modified condylotomy, arthroplasty, and joint reconstruction using autogenous or alloplastic materials. Autogenous grafts (for example, costochondral, cartilage, dermal, fat, fascial and other autogenous graft materials) may be considered medically necessary upon individual case review. Aetna considers the TMJ Concepts prosthesis, the Christensen TMJ Fossa-Eminence Prosthesis System (partial TMJ prosthesis), the Christensen TMJ Fossa-Eminence/Condylar Prosthesis System (Christensen total joint prosthesis), or the W. Lorenz TMJ prosthesis medically necessary when used as a “salvage device” for treatment of end-stage TMJ disease, when no other viable therapeutic alternatives are available.
  4. Aetna considers the following experimental and investigational for diagnosis and treatment of TMJ disorders:
    1. Diagnostic procedures
      1. Muscle testing / range of motion measurements (incidental to exam)
      2. Cephalometric or lateral skull X-rays
      3. Electromyography (EMG), surface EMG (see CPB 112 - Surface Scanning and Macro Electromyography http://www.aetna.com/cpb/medical/data/100_199/0112.html)
      4. Electronic registration (Myomonitor)
      5. Neuromuscular junction testing, somatosensory testing
      6. Standard dental radiographic procedures
      7. Sonogram (ultrasonic Doppler auscultation)
      8. Computerized mandibular scan / kinesiography / electrogathograph / jaw tracking
      9. Thermography (see CPB 029 - Thermography http://www.aetna.com/cpb/medical/data/1_99/0029.html)
      10. Diagnostic study models

    2. Non-surgical treatments
      1. Prophylactic management of TMJ disorder, including occlusal adjustment
      2. Cranial (craniosacral) manipulation (see CPB 388 - Complementary and Alternative Medicine http://www.aetna.com/cpb/medical/data/300_399/0388.html)
      3. Continuous passive motion (see CPB 010 - Continuous Passive Motion (CPM) Machines http://www.aetna.com/cpb/medical/data/1_99/0010.html)
      4. Radiofrequency generator thermolysis (see also CPB 400 - Ernest or Eagle's Syndrome (Stylomandibular Ligament Pain): Treatment with Radiofrequency Thermoneurolysis) http://www.aetna.com/cpb/medical/data/400_499/0400.html
      5. Orthodontic / bite adjustment services (see CPB 095 - Orthognathic Surgery http://www.aetna.com/cpb/medical/data/1_99/0095.html; and CPB 082 - Dental Services and Oral and Maxillofacial Surgery: Coverage Under Medical Plans http://www.aetna.com/cpb/medical/data/1_99/0082.html)
      6. Dental restorations / prostheses (see CPB 082 - Dental Services and Oral and Maxillofacial Surgery: Coverage Under Medical Plans http://www.aetna.com/cpb/medical/data/1_99/0082.html)
      7. Diathermy, infrared, and ultrasound treatments
      8. Low level (cold) laser (see CPB 363 - Cold Laser Therapy http://www.aetna.com/cpb/medical/data/300_399/0363.html)
      9. Hydrotherapy (immersion therapy, whirlpool baths)
      10. Myomonitor treatment (J-4, BNS-40, Bio-TENS)
      11. Myofunctional therapy
      12. Therabite Jaw Motion Rehabilitation System (see CPB 412 - Therabite Jaw Motion Rehabilitation System http://www.aetna.com/cpb/medical/data/400_499/0412.html)
      13. Iontophoresis (see CPB 229 - Iontophoresis http://www.aetna.com/cpb/medical/data/200_299/0229.html)
      14. Irreversible occlusion therapy aimed at modification of the occlusion itself through alteration of the tooth structure or jaw position
      15. Neuromuscular re-education
      16. Transcutaneous electrical nerve stimulation (TENS) (see CPB 011 - Electrical Stimulation for Pain http://www.aetna.com/cpb/medical/data/1_99/0011.html).
      17. Botulinum toxin (type A or type B) (see CPB 113 - Botulinum Toxin http://www.aetna.com/cpb/medical/data/100_199/0113.html)
      18. Ketamine (local/intra-articular administration)

    3. Surgical treatments
      1. Christensen total TMJ prosthesis
      2. Treatment of alveolar cavitational osteopathosis (see CPB 642 - Neuralgia Inducing Cavitational Osteonecrosis (NICO) andUltrasonograph Bone Densitometer to Detect NICO http://www.aetna.com/cpb/medical/data/600_699/0642.html)
      3. Partial TMJ prostheses
      4. Orthognathic surgery (see CPB 095 - Orthognathic Surgery http://www.aetna.com/cpb/medical/data/1_99/0095.html ).

Background:

Although the precise etiology of temporomandibular joint syndrome and temporomandibular joint disorder has not yet been identified, these conditions are believed to be the result of either "macro" or "micro" trauma affecting the joint and/or the associated facial musculature. Macro-trauma is usually historically obvious (for example, acute joint overload), and there is generally a documented history of direct trauma to the TMJ. Micro-trauma is a chronic and insidious process, multifactorial in presentation, and commonly associated with parafunctional habits, stress and anxiety, sleep disorders, dysfunctional occlusion, and various myofascial conditions (for example, fibromyalgia).

The etiology of temporomandibular disorders is intracapsular or extracapsular. Intracapsular abnormalities consist of internal derangements, including anterior disc displacement with or without reduction, disc perforation or fragmentation leading to degenerative joint disease, rheumatoid arthritis, synovitis, and neoplasia. Extracapsular abnormalities consist of myalgia or myospasm which may be related to trauma or parafunctional habits such as bruxism, tooth pain or postural abnormalities.

The diagnosis of TMD is largely based upon the symptoms of pain and signs of TMD (for example, joint sounds, variations from ideal disc position, clicking). These signs may also be found in large segments of the general population without evidence of impairment or dysfunction. According to available literature, specialized radiological studies (for example, cephalometric X-rays, tomograms, submental vertex radiographs) are not medically necessary in evaluating persons with TMD unless surgery is being considered.

The extent of internal derangements is often determined by magnetic resonance imaging (MRI). MRI is a useful for assessing disc morphology, disc fragmentation, and the disc-condylar relationship, especially where the patient is in a closed lock with a limited oral opening. Limchaichana et al (2006) assessed the evidence for the effectiveness of MRI in the diagnosis of disc position and configuration, disk perforation, joint effusion, and osseous and bone marrow changes in the TMJ.

Two reviewers evaluated the level of evidence of relevant publications as high, moderate or low. Based on this, the evidence grade for diagnostic efficacy was rated as strong, moderately strong, limited or insufficient. The literature search yielded 494 titles, of which 22 were relevant. No publication had a high level of evidence, and 12 had moderate and 10 low levels of evidence. The evidence grade for diagnostic efficacy expressed as sensitivity, specificity and predictive values was insufficient. The authors concluded that evidence for the effectiveness of MRI is insufficient and it emphasizes the need for high-quality studies on the diagnostic efficacy of MRI, incorporating accepted methodological criteria.

Therapy of TMD varies considerably according to the particular training, discipline and experience of the clinician. This variation in clinical practice is due, in part, to a paucity of evidence-based outcome research and lack of consensus on the appropriate management of TMD. Scientifically valid clinical trials are lacking for the vast majority of therapies that are currently employed. There are also no objective, generally accepted, diagnostic standards to correctly identify when a TMD is present.

The appropriate diagnosis and treatment of TMD is complicated by a high incidence of TMD/TMJ signs and symptoms associated with systemic disorders. These usually represent local or regional manifestations of chronic, global, musculoskeletal pain conditions, such as fibromyalgia, systemic myofascial pain and chronic fatigue syndrome. While an association with headaches has been identified, a causal relationship between TMD/TMJ and headaches has not been established. These conditions occur coincidentally and may be produced by etiologic factors that are common to both.

The National Institutes of Health emphasizes the importance of two key words in therapy: CONSERVATIVE & REVERSIBLE. A growing body of literature supports nonsurgical intervention for this condition. Similar to other musculoskeletal/joint conditions, treatment is directed toward unloading the affected structures and managing the attendant discomfort. Nonsurgical therapy customarily includes occlusal appliance therapy, physical therapy, medical management, and relaxation/cognitive-behavioral therapy. Prudence usually dictates that non-surgical therapy first be exhausted before any invasive therapies. Patients with a long history of head and neck pain may be candidates for a chronic pain assessment.

Appliance (splint) therapy has been shown to be beneficial for temporomandibular disorders. These devices represent the most common and effective TMD/TMJ therapy that is routinely provided by dentists, even though the physiologic mechanism of the treatment response is not completely understood. Splint design and usage are different depending upon whether the etiology is intracapsular or extracapsular. For extracapsular problems, a night guard or bite plain appliance worn at night may help. For intracapsular problems, the appliance needs to be worn throughout the entire day and night, except at meal times for a trial period of at least two to three months. Appliance therapy would not be indicated for patients who are unable to open their mouth wide enough to obtain the impressions of dental arches that are necessary for making a dental model for a custom made appliance.

Physical therapy is an established conservative method of TMD/TMJ treatment. As is the case with physical therapy for most other medical conditions, scientific evidence of therapeutic benefit from physical therapy in TMJ/TMD is limited. Therapy may include repetitive active or passive jaw exercises, thermal modalities, manipulation, vapor coolant spray-and-stretch technique, and electrogalvanic stimulation.

Initial medical management of TMD/TMJ conditions may include pharmaceutical therapy, similar to other acute and chronic orthopedic and musculoskeletal conditions. Nonopiate analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to be effective for mild-to-moderate inflammatory conditions and pain. Low-dosage tricyclic antidepressants (for example, amitriptyline) are have been used successfully in the treatment of chronic pain, sleep disturbance and nocturnal bruxism. Adjuvant pharmacologic therapies, including anticonvulsants, membrane stabilizers, and sympatholytic agents, may be useful for unremitting TMJ pain. Opiate analgesics, corticosteroids, anxiolytics and muscle relaxants are also used in refractory pain.

There is strong evidence of effectiveness for the relaxation class of techniques in reducing chronic pain associated with a variety of medical conditions. See CPB 132 - Biofeedback. The effectiveness of EMG biofeedback in the treatment of TMD has been evaluated in a meta-analysis of 13 studies. Approximately 70 percent of patients required no further treatment, were symptom free, or were substantially improved following EMG biofeedback therapy, compared with approximately 35 percent of patients who received placebo treatments. A synergistic response has been demonstrated when intraoral appliance therapy is combined with biofeedback and stress management. These results demonstrate the importance of using both dental and psychological treatments for successful intervention. Cognitive-behavioral therapy (CBT) also has been demonstrated to improve long-term outcomes for TMD patients, as has been the case with other chronic pain disorders. Behavior modification interventions and relaxation techniques are frequently included as a behavioral component of CBT.

Acupuncture and trigger-point injections may be used for TMD pain. A systematic review found substantial evidence of the effectiveness of acupuncture for treatment of TMD pain. While relatively fewer controlled studies on trigger-point injection have been conducted, trigger-point injection and dry needling of trigger-points have become widely accepted. While dry needling and trigger point injections of anesthetic appear to be equally effective, post-injection soreness from dry needling has been found to be more intense and of longer duration than experienced by patients injected with local anesthetic.

In cases involving chronic intractable pain and/or prior (including multiple) TMJ surgical procedures, caution is recommended due to the significant morbidity that may be experienced with TMJ surgical interventions. The long-term prognosis of this therapy for intractable pain may be unfavorable, due to the neurophysiology of chronic pain disorders. There is also evidence that the prognosis for success decreases with each additional (repeat) TMJ surgical intervention. In such cases, the literature indicates that the most promising treatment may be admission into a multidisciplinary chronic-pain treatment program.

In a review on TMD, Laudenbach and Stoopler (2003) noted that when patients do not respond to non-invasive TMD therapy, surgical procedures are considered. Initial closed-approach, surgical options include arthrocentesis and arthroscopy of the TMJs. These are the simplest and least invasive of all the surgical techniques. More advanced, open-approach TMJ surgeries include disk repositioning, diskectomy and modified condylotomy. Indeed, guidelines for the diagnosis and management of disorders involving the TMJ and related musculoskeletal structures that are approved by the American Society of Temporomandibular Joint Surgeons (2001) listed condylotomy (including modified condylotomy) as one of the surgical options.

In a prospective, controlled study, Hall et al (2005) compared the outcomes of 4 operations (arthroscopy, condylotomy, discectomy and disc repositioning) used for the treatment of painful TMJ with an internal derangement. Studies were conducted at 3 sites, and all sites used the same inclusion and exclusion criteria.

Trained, independent examiners assessed pain, diet, and range of motion before operation and then one month and one year after operation. There were statistically significant reductions in the amount of pain (p < 0.001) and daily time in pain (p < 0.001) that were similar for all 4 operations 1 month and 1 year after the procedures. The degrees of change after each of the 4 procedures were not statistically different from each other (amount: p = 0.453 and time: p = 0.416). Ability to chew, as measured by diet visual analog scale, was substantially improved 1 year after operation (p < 0 .001). The degrees of change for diet at 1 year also were not different from each other (p = 0.314). There were, however, statistically significant differences (p < 0.05) in range of motion that varied with procedure. The authors concluded that all 4 operations were followed by marked improvements in pain and diet. The amounts of improvement varied slightly by operation, but these differences were not statistically significant. There were small but statistically significant differences between procedures for range of motion.

McKenna (2006) stated that the therapeutic objective of modified condylotomy is to increase joint space, providing immediate joint load reduction and reducing if not abolishing condylar interference. The technical aspects of modified condylotomy are simple and familiar to surgeons comfortable with intraoral vertical ramus osteotomy. Satisfactory pain relief following modified condylotomy for non-reducing disc displacement (NRDD) demonstrate that disc reduction is not a prerequisite. However, when disc reduction is possible, as it often is in reducing disc displacement joints or joints that have recently progressed to NRDD, the odds of pain relief, especially moderate to severe pain, are improved and lower the risk for re-operation. Furthermore, modified condylotomy seems to favorably change the natural course of internal derangement/osteoarthrosis.

A partial TMJ prosthesis consists of a meniscectomy and placement of a metallic glenoid fossa metal prosthesis (Christensen fossa-eminence prosthesis, TMJ, Inc., Golden, CO) in place of the meniscus, such that a natural condyle articulates with a metal fossa prosthesis. There is inadequate evidence from published clinical outcome studies of the safety and effectiveness of partial joint prostheses in the treatment of TMD. The U.S. Food and Drug Administration Dental Products Advisory Panel reviewed clinical studies of the Christensen fossa prosthesis, and advised the FDA to approve the total prosthesis, but to not approve the partial joint prosthesis because of a lack of clinical data on its safety and effectiveness. The information submitted to the FDA on the safety and effectiveness of the partial TMJ prosthesis is limited and has not been published in a peer-reviewed journal. In an editorial, Laskin (2001), former editor-in-chief of the Journal of Oral and Maxillofacial Surgery, the official journal of the American Association of Oral and Maxillofacial Surgeons, commented on the data on the partial TMJ prosthesis presented to the FDA Dental Products Advisory Panel: “At that meeting [of the FDA Dental Products Advisory Panel where the partial TMJ prosthesis was considered] the FDA staff presentation expressed concern regarding the lack of data on the effect of the natural condyle articulating against a metal fossa, the limited number of patients with long-term follow-up, and the broad diagnosis of internal derangement as an indication for its use. The panel expressed similar concerns about these issues, as well as the fact that the registry data provided in support of the product did not include all the patients treated and the sample size was insufficient for each of the individual indications. They recommended clarification of the patient inclusion criteria in the clinical study, evaluation of failures and additional patient follow-up, more clearly defined indications for use of the device, and that a power analysis of the clinical data be done to place the PMA in an approvable form. However, despite these criticisms, and the panel’s opinion that adequate safety and effectiveness data for the given surgical indications were lacking, the device was approved by the FDA for distribution in February 2001.”

Laskin (2001) concluded that “there are insufficient data” to answer questions about the safety and effectiveness of the partial TMJ prosthesis. “For example, how reliable are clinical data based on a registry that did not include all patients treated with the device, in which there was a very small number of total patients with serial data and even smaller numbers in each diagnostic subcategory, and where in 1 group of 97 patients with a diagnosis of internal derangement and/or inflammatory arthritis, only thirty percent (12 subjects) had a follow-up of 3 or more years and seventy percent were either lost to follow-up, withdrawn, or potentially lost to follow-up. How can one make an informed decision with such information?”

The manufacturer subsequently submitted a post-approval study to the FDA on the long-term follow-up of patients with a variety of TMJ conditions treated with the partial TMJ prosthesis (Christensen, 2008). A total of 145 subjects (228 joints) were evaluated immediately before surgery and at regular intervals after surgery for up to 3 years. Success was measured as improvement of function and decrease in pain as measured on a visual analog scale (VAS), as well as improved incisor opening as measured with a Therabite Scale. Subjects showed a 4.9-cm reduction of pain on a 10-cm VAS scale and a 5.0-cm reduction in diet restriction at 36 months. Subjects who were admitted with an inter-incisal opening of less than or equal to 15 mm showed a 19.4 mm average improvement at 18 months and 17.4 mm average improvement at 36 months. The manufacturer reported that 4.1 % (6 subjects) of partial joint replacement subjects experienced device-related events, a percentage that was not significantly different than the percentage of device-related events reported with total joint replacement subjects (11.5 %). Limitations of the post-approval study were similar to those of the initial study submitted for FDA approval. In particular, less than half (44 %) of the 145 subjects enrolled in the study had pain, diet restriction, and incisal opening data through three years (36 months).

The manufacturer also submitted a post-approval study to the FDA on the long-term followup of patients with a variety of TMJ conditions who were treated with the total TMJ prosthesis (Christensen, 2008). A total of 78 subjects (127 joints) were evaluated immediately before surgery and at regular intervals after surgery for up to 3 years. Subjects showed a 4.9 cm reduction of pain and a 5.9 cm diet restriction at 36 months. Subjects who were admitted with an interincisal opening of less than or equal to 15 mm showed a 16.8 mm average improvement at 18 months and 18.0 mm average improvement at 36 months. Nine subjects (11.5 %) of total joint replacement subjects experienced device-related events. Follow-up was incomplete, as just over half (54 %) of subjects had pain data and diet restriction data (54 % and 57 %, respectively) at 36 months, and half (50 %) of subjects with reduced inter-incisal openings had incisal opening data at 36 months.

An evaluation study has reported significantly better post-surgical outcomes with the TMJ Concepts total joint prosthesis than the Christensen total joint prosthesis. Wolford, et al. (2003) reported the results of a study comparing the Christensen total joint prosthesis (TMJ Inc., Golden, CO) with the TMJ Concepts total joint prosthesis (TMJ Concepts Inc, Camarillo, CA) in 45 patients, 23 of whom were treated with the Christensen prosthesis, and 22 of whom were treated with the TMJ Concepts Prosthesis. The investigators reported that, although subjects treated with either total joint prosthesis showed good skeletal and occlusal stability, the subjects treated with the TMJ Concepts Prosthesis had statistically significant improved outcomes compared to subjects treated with the Christensen prosthesis with respect to post-surgical incisal opening (37.3 mm versus 30.1 mm, p = 0.008), pain (decrease of 3.1 versus 1.8 on 10 point visual analog scale score, p = 0.042), jaw function (improvement of 3.0 versus 1.2 on a 10 point scale, p = 0.008), and diet (2.0 versus 1.8 on a 10 point scale, p = 0.021). The investigators concluded “[a]s a result of our study, it appears that [TMJ Concepts Prosthesis] provides a more biologically accepted and functional prosthesis than the [Christensen prosthesis] for the complex TMJ patient.”

In a study that examined factors to consider in-joint prosthesis systems, Wolford (2006) stated that metal-on-ultra-high-molecular-weight polyethylene (UMWPE) has shown negligible wear debris histologically in the TMJ, whereas the Christensen prosthesis often demonstrates visible and histological evidence of metallosis from wear debris. Furthermore, the author stated that to appropriately evaluate the success of the Christensen products, independent researchers (not affiliated with TMJ Implants Inc.) must perform prospective studies, because the research data provided by the company are highly suspect.

The W. Lorenz total TMJ replacement system (Walter Lorenz Surgical, Inc., Jacksonville, FL) was approved by the FDA on September 21, 2005 the FDA for the functional reconstruction of diseased and/or damaged jaw joints. Its two components (mandibular condyle and glenoid fossa) are available in multiple sizes as left- and right-side-specific designs. Approved indications for the W. Lorenz TMJ replacement system include arthritic conditions such as osteoarthritis, traumatic arthritis or rheumatoid arthritis; ankylosis including but not limited to recurrent ankylosis with excessive heterotopic bone formation; and revision procedures in which other treatments have failed (for example, alloplastic reconstruction, autogenous grafts). The approval was based on data from a 6-year case series study of 224 patients (329 joints), showing that patients receiving the implant reported reduced pain, improved function, an increase in maximal incisal opening, as well as satisfaction with the outcome.

The device is not intended for partial TMJ reconstruction or for use in patients susceptible to infection or having active/chronic infection, insufficient bone to support the device, an immature skeleton or hyperfunctional habits such as clenching/grinding of teeth. An evaluation of the W. Lorenz total TMJ replacement system by the Australian Department of Health and Aging (2006) stated that the only available study on this prosthesis was the case series included in the FDA safety and effectiveness summary. The Australian Department of Health and Aging recommended monitoring of the continual development of this technology.

Certain other total joint prostheses, such as the Vitek-Kent total joint prosthesis (Vitek Inc, Houston, TX) and silastic implants, are not considered medically necessary as they have been removed from the market due to poor biocompatibility, increased wear, fragmentation, and foreign body giant cell reaction.

For persons who already have had implant or other invasive surgery, additional surgical interventions (with the possible exception of implant removal) should be considered only with great caution, since the evidence indicates that the probability of success decreases with each additional surgical intervention. For these persons, available evidence indicates that the most promising immediately available treatment may be a patient-centered, multidisciplinary, palliative approach.

In a pilot study, Adiels and colleagues (2005) assessed if fibromyalgia syndrome (FMS) patients with signs and symptoms of TMD refractory to conservative TMD treatment would respond positively to tactile stimulation in respect of local and/or general symptoms. A total of 10 female patients fulfilling the inclusion criteria received such treatment once-weekly during a 10-week period. At the end of treatment, a positive effect on both clinical signs and subjective symptoms of TMD, as well as on general body pain, was registered. Eight out of 10 patients also perceived an improved quality of their sleep. At follow-ups after 3 and 6 months, some relapse of both signs and symptoms could be seen, but there was still an improvement compared to the initial degree of local and general complaints. At the 6-month follow-up, half of the patients also reported a lasting improvement of their sleep quality. One hypothetical explanation to the positive treatment effect experienced by the tactile stimulation might be the resulting improvement of the patients' quality of sleep leading to increased serotonin levels. The authors concluded that "the results of the present pilot study are so encouraging that they warrant an extended, controlled study."

There is insufficient evidence in the literature to support the hypothesis that orthognathic surgical correction for TMJ abnormalities such as condylar hypertrophy, status post condylar fracture, ankylosis, etc., will predictably prevent or improve a temporomandibular dysfunction. There is no body of evidence in the peer-reviewed literature to suggest that orthognathic surgery is a curative modality for internal joint derangements of the temporomandibular joints.

A systemic review on malocclusions and orthodontic treatment by the Swedish Council on Technology Assessment in Health Care (SBU, 2005) concluded that the appearance of the teeth is the patients' most important reason for seeking orthodontic treatment. In addition, scientific evidence is insufficient for conclusions on patient satisfaction in the log-term (at least 5 years) after the conclusion of orthodontic treatment. Furthermore, the assessment stated that scientific evidence is insufficient for conclusions on a correlation between specific untreated malocclusions and symptomatic TMJ disorders.

In a Cochrane review on orthodontics for treating TMD, Luther et al (2010) examined the effectiveness of orthodontic intervention in reducing symptoms in patients with TMD (compared with any control group receiving no treatment, placebo treatment or reassurance) and whether active orthodontic intervention leads to TMD. The Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE and EMBASE were searched. Hand-searching of orthodontic journals and other related journals was undertaken in keeping with the Cochrane Collaboration hand-searching program. No language restrictions were applied. Authors of any studies were identified, as were experts offering legal advice, and contacted to identify unpublished trials. Most recent search was April 13, 2010. All randomized controlled trials (RCTs) including quasi-randomized trials assessing orthodontic treatment for TMD were included. Studies with adults aged equal to or above 18 years old with clinically diagnosed TMD were included. There were no age restrictions for prevention trials provided the follow-up period extended into adulthood. The inclusion criteria required reports to state their diagnostic criteria for TMD at the start of treatment and for participants to exhibit 2 or more of the signs and/or symptoms. The treatment group included treatment with appliances that could induce stable orthodontic tooth movement. Patients receiving splints for 8 to 12 weeks and studies involving surgical intervention (direct exploration/surgery of the joint and/or orthognathic surgery to correct an abnormality of the underlying skeletal pattern) were excluded. Main outcome measures were how well the symptoms were reduced, adverse effects on oral health and quality of life. Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in triplicate and independently by 3 review authors. As no 2 studies compared the same treatment strategies (interventions) it was not possible to combine the results of any studies. The searches identified 284 records from all databases. Initial screening of the abstracts and titles by all review authors identified 55 articles that related to orthodontic treatment and TMD. The full articles were then retrieved and of these articles only 4 demonstrated any data that might be of value with respect to TMD and orthodontics. After further analysis of the full texts of the 4 studies identified, none of the retrieved studies met the inclusion criteria and all were excluded from this review. The authors concluded that there are insufficient research data on which to base their clinical practice on the relationship of active orthodontic intervention and TMD. There is an urgent need for high quality RCTs in this area of orthodontic practice. When considering consent for patients it is essential to reflect the seemingly random development/alleviation of TMD signs and symptoms.

da Cunha et al (2008) assessed the effectiveness of low-level laser therapy (LLLT) in patients presenting with TMD. A total of 40 patients were randomized into an experimental group (G1) or a placebo group (G2). The treatment was carried out with an infrared laser (830 nm, 500 mW, 20s, 4J/point) at the painful points, once-weekly for 4 consecutive weeks. Patients were evaluated before and after the treatment through a visual analog scale (VAS) and the cranio-mandibular index (CMI).

The baseline and post-therapy values of VAS and CMI were compared by the paired t-test, separately for the placebo and laser groups. A significant difference was observed between initial and final values (p < 0.05) in both groups. Baseline and post-therapy values of pain and CMI were compared in the therapy groups by the 2-sample t-test, yet no significant differences were observed regarding VAS and CMI (p > 0.05).

The authors concluded that after either placebo or laser therapy, pain and temporomandibular symptoms were significantly lower, although there was no significant difference between groups. The LLLT was ineffective for the treatment of TMD, when compared to the placebo. This is in agreement with the findings of Emshoff et al (2008) who reported that LLLT is not better than placebo in reducing TMJ pain during function (n = 52).

In a randomized, double-blinded, placebo-controlled study, Castrillon et al (2008) examined the effect of peripheral N-methyl-D-aspartate (NMDA) receptor blockade with ketamine on chronic myofascial pain in patients with TMD.

A total of 14 patients (10 women and 4 men) were recruited. The subjects completed 2 sessions in a double-blinded randomized and placebo-controlled trial. They received a single injection of 0.2 ml ketamine or placebo (buffered isotonic saline, 155 mmol/l) into the most painful part of the masseter muscle.

The primary outcome parameters were spontaneous pain assessed on an electronic VAS and numeric rating scale. In addition, numeric rating scale of unpleasantness, numeric rating scale of pain relief, pressure pain threshold, pressure pain tolerance, completion of a McGill Pain Questionnaire and pain drawing areas, maximum voluntary bite force and maximum voluntary jaw opening were obtained. Paired t-tests and analysis of variance were performed to compare the data. There were no main effects of the treatment on the outcome parameters except for a significant effect of time for maximum voluntary bite force (analysis of variance [ANOVA]; p = 0.030) and effects of treatment, time, and interactions between treatment and time for maximum voluntary jaw opening (ANOVA; p < 0.047).

The authors concluded that these findings suggest that peripheral NMDA receptors do not play a major role in the pathophysiology of chronic myofascial TMD pain. Although there was a minor effect of ketamine on maximum voluntary jaw opening, local administration may not be promising treatment for these patients.

In a cross-over, double-blinded, placebo-controlled manner, Ayesh and associates(2008) studied the effect of intra-articular ketamine on TMJ pain and somatosensory function. Spontaneous pain and pain on jaw function was scored by patients on 0 to 10 cm VAS for up to 24hours. Quantitative sensory tests: tactile, pin-prick, pressure pain threshold and pressure pain tolerance were used for assessment of somatosensory function at baseline and up to 15 minutes after injections.

There were no significant effects of intra-articular ketamine over time on spontaneous VAS pain measures (ANOVA: p = 0.532), pain on jaw opening (ANOVA: p = 0.384), or any of the somatosensory measures (ANOVA: p > 0.188). The poor effect of ketamine could be due to involvement of non-NMDA receptors in the pain mechanism and/or ongoing pain and central sensitization independent of peripheral nociceptive input. The authors concluded that there appears to be no rationale to use intra-articular ketamine injections in TMJ arthralgia patients, and peripheral NMDA receptors may play a minor role in the pathophysiology of this disorder.

In a systematic review, Manfredini and colleagues (2010) examined the clinical studies on the use of hyaluronic acid (HA) injections to treat TMJ disorders performed over the last decade. The selected papers were assessed according to a structured reading of articles format, which provided that the study design was methodologically evaluated in relation to 4 main issues: (i) population, (ii) intervention, (iii) comparison, and (iv) outcome. A total of 19 papers were selected for inclusion in the review, 12 dealt with the use of HA in TMJ disk displacements and 7 dealt with inflammatory-degenerative disorders. Only 9 groups of researchers were involved in the studies, and less than 50 % of the studies (8/19) were randomized and controlled trials. All studies reported a decrease in pain levels independently by the patients' disorder and by the adopted injection protocol. Positive outcomes were maintained over the follow-up period, which ranged between 15 days and 24 months. The superiority of HA injections was shown only against placebo saline injections, but outcomes are comparable with those achieved with corticosteroid injections or oral appliances. The available literature seems to be inconclusive as to the effectiveness of HA injections with respect to other therapeutic modalities in treating TMJ disorders. The authors concluded that studies with a better methodological design are needed to gain better insight into this issue and to draw clinically useful information on the most suitable protocols for each different TMJ disorder.

CPT Codes / HCPCS Codes / ICD-9 Codes*

CPT codes covered if selection criteria are met:
20552Injection(s); single or multiple trigger point(s), 1 or 2 muscle(s)
20553single or multiple trigger point(s), 3 or more muscles
20605Arthrocentesis, aspiration and/or injection; intermediate joint or bursa (for example, temporomandibular, acromioclavicular, wrist, elbow or ankle, olecranon bursa)
21010Arthrotomy, tempomandibula joint
21050Condylectomy, tempomandibular joint (separate procedure)
21060Meniscectomy, partial or complete, tempomandibular joint (separate procedure)
21070Coronoidectomy (separate procedure)
21076Impression and custom preparation; surgical obturator prosthesis
21079interim obturator prosthesis
21080definitive obturator prosthesis
21081mandibular resection prosthesis
21085oral surgical splint
21110Application of interdental fixation device for conditions other than fracture or dislocation, includes removal
21193Reconstruction of mandibular rami, horizontal, vertical, C, or L osteotomy; without bone graft
21198Osteotomy, mandible, segmental;
21240Arthroplasty, tempomandibular joint, with or without autograft (includes obtaining graft)
21242Arthroplasty, tempomandibular joint, with allograft
21255Reconstruction of zygomatic arch and glenoid fossa with bone and cartilage (includes obtaining autografts)
21440Closed treatment of mandibular, or maxillary alveolar ridge fracture (separate procedure)
21445Open treatment of mandibular, or maxillary alveolar ridge fracture (separate procedure)
21450Closed treatment of mandibular fracture; without manipulation
21451with manipulation
21452Percutaneous treatment of mandibular fracture; with external fixation
21453Closed treatment of mandibular fracture with interdental fixation
21454Open treatment of mandibular fracture with external fixation
21461Open treatment of mandibular fracture; without interdental fixation
21462with interdental fixation
21465Open treatment of mandibular condylar fracture
21470Open treatment of complicated mandibular fracture by multiple surgical approaches including internal fixation, interdental fixation, and/or wiring of dentures or splints
21480Closed treatment of temporomandibular dislocation; initial or subsequent
21485complicated (for example, recurrent requiring intermaxillary fixation or splinting), initial or subsequent
21490Open treatment of temporomandibular dislocation
21497Interdental wiring, for condition other than fracture
29800Arthroscopy, temporomandibular joint, diagnostic, with or without synovial biopsy (separate procedure)
29804Arthroscopy, temporomandibular joint, surgical
90901Biofeedback training by any modality
97010Application of a modality to 1 or more areas; hot or cold packs
97110Therapeutic procedure, one or more areas, each 15 minutes; therapeutic exercises to develop strength and endurance, range of motion and flexibility
97124massage, including effleurage, petrissage and/or tapotement (stroking, compression, percussion)
97140Manual therapy techniques (for example, mobilization/ manipulation, manual lymphatic drainage, manual traction), one or more regions, each 15 minutes
97530Therapeutic activities, direct (one-on-one) patient contact by the provider (use of dynamic activities to improve functional performance), each 15 minutes
97810 Acupuncture, 1 or more needles; without electrical stimulation, initial 15 minutes of personal one-on-one contact with the patient
+ 97811without electrical stimulation, each additional 15 minutes of personal one-on-one contact with the patient, with re-insertion of needle(s) (List separately in addition to primary procedure)
97813with electrical stimulation, initial 15 minutes of personal one-on-one contact with the patient
+ 97814with electrical stimulation, each additional 15 minutes of personal one-on-one contact with the patient, with re-insertion of needle(s) (List separately in addition to primary procedure)
CPT codes not covered for indications listed in the CPB:
20605Arthrocentesis, aspiration and/or injection; intermediate joint or bursa (e.g., temporomandibular, acromioclavicular, wrist, elbow or ankle, olecranon bursa) [not covered for viscosupplementation injection
21120 - 21123Genioplasty
21125 - 21127Augmentation mandibular body or angle
21141 - 21147Reconstruction midface, Lefort I
21150 - 21151Reconstruction midface, Lefort II
21154 - 21155Reconstruction midface, Lefort III (extracranial), any type, requiring bone grafts (includes obtaining autografts)
21159 - 21160Reconstruction midface, Lefort III (extra and intracranial) with forehead advancement (e.g., mono bloc), requiring bone grafts (includes obtaining autografts)
21194Reconstruction of mandibular rami, horizontal, vertical, C, or L osteotomy; with bone graft (includes obtaining graft)
21195 - 21196Reconstruction of mandibular rami and/or body, sagittal split
21199Osteotomy, mandible, segmental; with genioglossus advancement
21206Osteotomy, maxilla, segmental (for example, Wassmund or Schuchard)
21208 - 21209Osteoplasty, facial bones
21243Arthroplasty, temporomandibular joint, with prosthetic joint replacement
21247Reconstruction of mandibular condyle with bone and cartilage autografts (includes obtaining grafts)(for example, for hemifacial microsomia)
21248 - 21249Reconstruction of mandible or maxilla, endosteal implant (for example, blade, cylinder)
70300Radiologic examination, teeth; single view
70310 partial examination, less than full mouth
70320 complete, full mouth
70487Computerized tomography, maxillofacial area; with contrast material(s)
70488 without contrast material, followed by contrast material(s) and further sections
93875Non-invasive physiologic studies of extracranial arteries, complete bilateral study (for example, periorbital flow direction with arterial compression, ocular pneumoplethysmography, Doppler ultrasound spectral analysis)
95867Needle electromyography; cranial nerve supplied muscle(s), unilateral
95868cranial nerve supplied muscles, bilateral
95937Neuromuscular junction testing (repetitive stimulation, paired stimuli), each nerve, any one method
97014Application of a modality to one or more areas; electrical stimulation (unattended)
97024diathermy (for example, microwave)
97026 infrared
97028 ultraviolet
97032Application of a modality to one or more areas; electrical stimulation (manual), each 15 minutes
97033 iontophoresis, each 15 minutes
97035 ultrasound, each 15 minutes
97036 Hubbard tank, each 15 minutes
97532Development of cognitive skills to improve attention, memory, problem solving, (includes compensatory training), direct (one-on-one) patient contact by the provider, each 15 minutes
97750Physical performance test or measurement (for example, musculoskeletal, functional capacity), with written report, each 15 minutes
Other CPT codes related to the CPB:
70328Radiologic examination, temporomandibular joint, open and closed mouth; unilateral
70330 bilateral
70332Temporomandibular joint arthrography, radiological supervision and interpretation
70336Magnetic resonance (for example, proton) imaging, temporomandibular joint(s)
70486Computerized tomography, maxillofacial area; without contrast material
70540Magnetic resonance (for example, proton) imaging, orbit, face, and/or neck; without contrast material(s)
70542 with contrast material(s)
70543 without contrast material(s), followed by contrast material(s) and further sequences
HCPCS codes covered if selection criteria are met:
D0320Temporomandibular joint arthrogram, including injection
D0321Other temporomandibular joint films, by report
D0322Tomographic survey
D0340Cephalometric film
D5931 - D5933, D5936 Obturator prostheses
D5934 Mandibular resection prosthesis with guide flange
D5982Surgical stent
D5988Surgical splint
D7630Mandible-open reduction (teeth immobilized, if present)
D7640Mandible-closed reduction (teeth immobilized, if present)
D7730Mandible-open reduction
D7740Mandible-closed reduction
D7810 - D7880Reduction of dislocation and management of other temporomandibular joint dysfunctions
E0746Electromyography (EMG), biofeedback device
S8262Mandibular orthopedic repositioning device, each
HCPCS codes not covered for indications listed in the CPB:
A4556Electrodes (for example, apnea monitor), per pair
A4557Lead wires (for example, apnea monitor), per pair
A4558Conductive gel or paste, for use with electrical device (for example, TENS, NMES), per oz.
A4595Electrical stimulator supplies, 2 lead, per month, (for example, TENS, NMES)
D0350Oral/facial photographic images
D5110 - D5899Prosthodontics (removable)
D6210 - D6999Prosthodontics (fixed)
D7899Unspecified TMD therapy, by report
D7940 Osteoplasty - for orthognathic deformities
D7941Osteotomy - mandibular rami
D7943Osteotomy - mandibular rami with bone graft; includes obtaining the graft
D7944Osteotomy - segmented or subapical
D7945Osteotomy - body of mandible
D7946Lefort I (maxilla - total)
D7947Lefort I (maxilla - segmented)
D7948Lefort II or Lefort III (osteoplasty of facial bones for midface hypoplasia or retrusion), without bone graft
D7949Lefort II or Lefort III, with bone graft
D7950Osseous, osteoperiosteal, or cartilage graft of the mandible or maxilla, autogenous or nonautogenous, by report
D7951Sinus augmentation with bone or bone substitutes
D7953Bone replacement graft for ridge preservation - per site
D7955Repair of maxillofacial soft and/or hard tissue defect
D9940Occlusal guards, by report
D9951Occlusal adjustment - limited
D9952Occlusal adjustment - complete
E0720Transcutaneous electrical nerve stimulation (TENS) device, two lead, localized stimulation
E0730Transcutaneous electrical nerve stimulation (TENS) device, four or more leads, for multiple nerve stimulation
E0745Neuromuscular stimulator, electronic shock unit
J7321Hyaluronan or derivative, Hyalgan or Supartz, for intra-articular injection, per dose [knee only - see selection criteria]
J7323Hyaluronan or derivative, Euflexxa, for intra-articular injection, per dose [knee only - see selection criteria]
J7324Hyaluronan or derivative, Orthovisc, for intra-articular injection, per dose [knee only - see selection criteria]
J7325Hyaluronan or derivative, Synvisc, or Synvisc-One for intra-articular injection, per dose [knee only - see selection criteria]
ICD-9 codes covered if selection criteria are met:
524.60 - 524.69Temporomandibular joint disorders
802.20 - 802.5Fracture of mandible, closed or open, or malar and maxillary bones closed or open
830.0 - 830.1Dislocation of jaw, closed or open
996.77Other complications due to internal joint prosthesis
996.78Other complications due to other internal orthopedic device, implant, and graft
Other ICD-9 codes related to the CPB:
306.8Other specified psychophysiological malfunction
327.00 - 327.9Organic sleep disorders
346.00 - 346.91Migraine
352.1Glossopharyngeal neuralgia
729.1Myalgia and myositis, unspecified
733.40Aseptic necrosis of bone, site unspecified
733.49Aseptic necrosis of bone, other
780.50 - 780.59 Sleep disturbances
780.71Chronic fatigue syndrome
784.0Headache
908.6Late effect of certain complications of trauma [scarring of temporomandibular joint that is severe and the result of old injury or prior procedure]
909.3Late effect of complications of surgical and medical care [scarring of temporomandibular joint that is severe and the result of old injury or prior procedure]
959.09Injury of face and neck [temporomandibular joint]
996.77 - 996.78Other complications due to internal joint prosthesis and other internal orthopedic device, implant, and graft
V45.89Other postprocedural states [head and neck tumor resection]

The above policy is based on the following references:

1Antczk-Bouckoms AA. Epidemiology of research for temporomandibular disorders. J Orafac Pain. 1995;9:226-234.

2DeBoever JA, Keersmaekers K. Trauma in patients with temporomandibular disorders: frequency and treatment outcome. J Oral Rehabil. 1996;23:91-96.

3Laskin D, ed. Current controversies in surgery for internal derangements of the temporomandibular joint. Oral and Maxillofacial Surgery Clinics of North America. Philadelphia, PA: W.B. Saunders, 1994.

4Okeson J, ed. Orofacial Pain: Guidelines for Assessment, Diagnosis and Management. Chicago, IL: Quintessence, 1996.

5National Institutes of Health (NIH). Technology Assessment Conference Statement - Management of Temporomandibular Disorders. Bethesda, MD: NIH; April 29-May 1, 1996.

6Bell W, ed. Modern practice in orthognathic and reconstructive surgery. Philadelphia, PA: W.B. Saunders; 1992.

7Merrill R, ed. Disorders of the TMJ. Oral and Maxillofacial Surgery Clinics of North America. Philadelphia, PA: W.B. Saunders; 1989.

8McNeill C. History and evolution of TMD concepts. Oral Surg Oral Med Oral Path. 1997; 83:51-60.

9American Association of Oral and Maxillofacial Surgeons. Parameters of care for oral and maxillofacial surgery: A guide for practice, monitoring, and evaluation. J Oral Maxillofac Surg. 1996; 54:1270-1280.

10De Leeuw R, Boering G, Van Der Kuijl B, et al. Hard and soft tissue imaging of the temporomandibular joint 30 years after diagnosis and internal derangement. J Oral Maxillofac Surg. 1996; 54:1270-1280.

11Sato S, Kawamura H, Nagasaka H, et al. The natural course of anterior disc displacement without reduction in the temporomandibular joint: follow-up at 6, 12, and 18 months. J Oral Maxillofac Surg. 1997; 55:234-238.

12Tarro A. Discussion: The natural course of anterior disc displacement without reduction in the temporomandibular joint: Follow-up at 6, 12, and 18 months. J Oral Maxillofac Surg. 1997; 55:238-239.

13National Institutes of Health (NIH). Integration of behavioral and relaxation approaches into the treatment of chronic pain and insomnia, Technology Assessment Conference Statement. Bethesda MD: NIH; October 16-19, 1995:9.

14Crider AB, Glaros AG. A meta-analysis of EMG biofeedback treatment of temporomandibular disorders. J. Orofacial Pain. 1999;13(1):29-37.

15Turk DC, Zaki HS, Rudy TE. Effects of intraoral appliance and biofeedback/stress management alone and in combination, in treating pain and depression in patients with temporomandibular disorders. J. Prosthetic Dentistry. 1991;70:158-164.

16Stam HJ, McGrath PA, Brooke RI. The effects of a cognitive-behavioral treatment program on temporomandibular pain and dysfunction syndrome. Psychosom Med. 1984;46:534-545.

17Dworkin S, et al. Brief group cognitive behavioral intervention for temporomandibular disorders. Pain. 1994;59:175-187.

18Marbach JJ, Ballard GT, et al. Patterns of temporomandibular joint surgery: Evidence for gender differences. J Am Dent Assoc. 1997;128:609-614.

19Rokiki LA, et al. Change mechanisms associated with combined relaxation/EMG biofeedback training in chronic tension headache. Appl Psychophysiol Biofeedback. 1997;22:21-41.

20Turk DC, Okifuji A. Treatment of chronic pain patients: Clinical outcomes, cost-effectiveness, and cost-benefits of multidisciplinary pain centers. Phys Rehab Med. 1998;10(2):181-208.

21Ren K, Dubner R. Central nervous system plasticity and persistent pain. J Orofac Pain. 1999;13:155-163.

22De Boever JA, Carlsson GE, Klineberg IJ. Need for occlusal therapy and prosthodontic treatment in the management of temporomandibular disorders. Part I: Occlusal interferences and occlusal adjustment. J Oral Rehabil. 2000;27(8):647-59.

23De Boever JA, Carlsson GE, Klineberg IJ. Need for occlusal therapy and prosthodontic treatment in the management of temporomandibular disorders. Part II: Tooth loss and prosthodontic treatment. J Oral Rehabil. 2000;27(8):647-59.

24Hall HD, Navarro EZ, Gibbs SJ. Prospective study of modified condylotomy for treatment of nonreducing disk displacement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(2):147-158.

25Hall HD, Navarro EZ, Gibbs SJ. One- and three-year prospective outcome study of modified condylotomy for treatment of reducing disc displacement. J Oral Maxillofac Surg. 2000;58(1):7-18.

26Hall HD, Werther JR. Results of reoperation after failed modified condylotomy. J Oral Maxillofac Surg. 1997;55(11):1250-1254.

27Albury CD Jr. Modified condylotomy for chronic nonreducing disk dislocations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(3):234-240.

28McKenna SJ, Cornella F, Gibbs SJ. Long-term follow-up of modified condylotomy for internal derangement of the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81(5):509-515.

29Hall HD. Modification of the modified condylotomy. J Oral Maxillofac Surg. 1996 May;54(5):548-552.

30Werther JR, Hall HD, Gibbs SJ. Disk position before and after modified condylotomy in 80 symptomatic temporomandibular joints. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(6):668-679.

31Hall HD, Nickerson JW Jr, McKenna SJ. Modified condylotomy for treatment of the painful temporomandibular joint with a reducing disc. J Oral Maxillofac Surg. 1993;51(2):133-144.

32Upton LG, Sullivan SM. The treatment of temporomandibular joint internal derangements using a modified open condylotomy: A preliminary report. J Oral Maxillofac Surg. 1991;49(6):578-584.

33Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109-121.

34National Institutes of Health (NIH), National Institute of Dental and Craniofacial Research. TMD. Temporomandibular Disorders. NIH Publication No. 94-3847. Bethesda, MD: NIH; 2000. Available at: http://www.nidcr.nih.gov/health/pubs/tmd/main.htm. Accessed January 21, 2004.

35Mercuri LG, Wolford LM, Sanders B, et al. Custom CAD/CAM total temporomandibular joint reconstruction system: Preliminary multicenter report. J Oral Maxillofac Surg. 1995;53(2):106-116.

36Van Loon JP, De Bont L, Boering G. Evaluation of temporomandibular joint prostheses: Review of the literature from 1946 to 1994 and implications for future prosthesis designs. J Oral Maxillofac Surg. 1995;53(9):984-997.

37Wolford LM, Cottrell DA, Henry CH. Temporomandibular joint reconstruction of the complex patient with the Techmedica custom-made total joint prostheses. J Oral Maxillofac Surg. 1994;52:2.

38Shi Z, Guo C, Awad M. Hyaluronate for temporomandibular joint disorders. Cochrane Database Syst Rev. 2003;(1):CD002970.

39Wiffen P, Collins S, McQuay H, et al. Anticonvulsant drugs for acute and chronic pain. Cochrane Database Syst Rev. 2005;(3):CD001133.

40UK National Health Service (NHS). What is the best treatment for temporomandibular joint dysfunction? ATTRACT Database. Gwent, Wales, UK: NHS; December 11, 2002.

41Koh H, Robinson PG. Occlusal adjustment for treating and preventing temporomandibular joint disorders. Cochrane Database Syst Rev. 2003;(1):CD003812.

42Ernst E, White AR. Acupuncture as a treatment for temporomandibular joint dysfunction: a systematic review of randomized trials. Arch Otolaryngol Head Neck Surg. 1999;125(3):269-272.

43Al-Ani MZ, Gray RJM, Davies SJ, Sloan P. Stabilisation splint therapy for temporomandibular pain dysfunction syndrome. Cochrane Database Syst Rev. 2004:(1):CD002278.

44Al-Ani Z, Gray R, Davies S, Sloan P, Worthington H. Anterior repositioning splint for temporomandibular joint disc displacement (Protocol for a Cochrane Review). Cochrane Database Syst Rev. 2003;(1):CD003977.

45Moenning JE, Bussard DA, Montefalco PM, et al. Medical necessity of orthognathic surgery for the treatment of dentofacial deformities associated with temporomandibular disorders. Int J Adult Orthodont Orthognath Surg, 1997;12(2):153-161.

46Chase DC, Hudson JW, Gerard DA, et al. The Christensen prosthesis. A retrospective clinical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80(3):273-278.

47McLeod NM, Saeed NR, Hensher R. Internal derangement of the temporomandibular joint treated by discectomy and hemi-arthroplasty with a Christensen fossa-eminence prosthesis. Br J Oral Maxillofac Surg. 2001;39(1):63-66.

48Speculand B, Henscher R, Powell D. Total prosthetic replacement of the TMJ: Experience with two systems 1988-1997. Br J Oral Maxillofac Surg. 2000;38(4):360-369.

49Wolford LM. Temporomandibular joint devices; Treatment factors and outcomes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83(1):143-149.

50Kearns GJ, Perrott DH, Kaban LB. A protocol for the management of failed alloplastic temporomandibular joint disc implants. J Oral Maxillofac Surg. 1995;53(11):1240-1249.

51U.S. Food and Drug Administration (FDA). TMJ Implants, Inc. Partial Temporomandibular Joint Prosthesis. Summary of Safety and Effectiveness Data. PMA No. P000035. Rockville, MD: FDA; October 6, 2000.

52Wolford LM, Dingwerth DJ, Talwar RM, Pitta MC. Comparison of 2 temporomandibular joint total joint prosthesis systems. J Oral Maxillofac Surg. 2003;61(6):685-690.

53American Society of Temporomandibular Joint Surgeons. Guidelines for diagnosis and management of disorders involving the temporomandibular joint and related musculoskeletal structures. Cranio. 2003;21(1):68-76.

54White SC, Heslop EW, Hollender LG, et al. American Academy of Oral and Maxillofacial Radiology, ad hoc Committee on Parameters of Care. Parameters of radiologic care: An official report of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(5):498-511.

55Dawson PE. Position paper regarding diagnosis, management, and treatment of temporomandibular disorders. The American Equilibration Society. J Prosthet Dent. 1999;81(2):174-178.

56Phillips DJ Jr, Gelb M, Brown CR, et al. Guide to evaluation of permanent impairment of the temporomandibular joint. American Academy of Head, Neck and Facial Pain; American Academy of Orofacial Pain; American Academy of Pain Management; American College of Prosthodontists; American Equilibration Society and Society of Occlusal Studies; American Society of Maxillofacial Surgeons; American Society of Temporomandibular Joint Surgeons; International College of Cranio-mandibular Orthopedics; Society for Occlusal Studies. Cranio. 1997;15(2):170-178.

57Laskin D. Shifting responsibility for medical decisions. Editorial. J Oral Maxillofac Surg. 2001;59:601-602.

58Forssell H, Kalso E, Koskela P, et al. Occlusal treatments in temporomandibular disorders: A qualitative systematic review of randomised controlled trials. Pain. 1999;83(3):549-560.

59Reston JT, Turkelson CM. Meta-analysis of surgical treatments for temporomandibular articular disorders. J Oral Maxillofacial Surg. 2003;61(1):3-10.

60Park J, Keller EE, Reid JI. Surgical management of advanced degenerative arthritis of temporomandibular joint with metal fossa-eminence hemijoint replacement prosthesis: An 8-year retrospective pilot study. J Oral Maxillofac Surg. 2004;62:320-328.

61Al-Ani MZ, Davies SJ, Gray RJ, et al. Stabilisation splint therapy for temporomandibular pain dysfunction syndrome. Cochrane Database Syst Rev. 2004;(1):CD002778.

62Sycha T, Kranz G, Auff E, Schnider P. Botulinum toxin in the treatment of rare head and neck pain syndromes: A systematic review of the literature. J Neurol. 2004;251 Suppl 1:I19-I30.

63Koh H, Robinson PG. Occlusal adjustment for treating and preventing temporomandibular joint disorders. J Oral Rehabil. 2004;31(4):287-292.

64Birch S, Hesselink JK, Jonkman FA, et al. Clinical research on acupuncture. Part 1. What have reviews of the efficacy and safety of acupuncture told us so far? J Altern Complement Med. 2004;10(3):468-480.

65Hall HD, Indresano AT, Kirk WS, Dietrich MS. Prospective multicenter comparison of 4 temporomandibular joint operations. J Oral Maxillofac Surg. 2005;63(8):1174-1179.

66Jedel E, Carlsson J. Biofeedback, acupuncture and transcutaneous electric nerve stimulation in the management of temporomandibular disorders: A systematic review. Physical Ther Rev. 2003;8(4):217-223.

67Adiels AM, Helkimo M, Magnusson T. Tactile stimulation as a complementary treatment of temporomandibular disorders in patients with fibromyalgia syndrome. A pilot study. Swed Dent J. 2005;29(1):17-25.

68American Society of Temporomandibular Joint Surgeons. Guidelines for the diagnosis and management of disorders involving the temporomandibular joint and related musculoskeletal structures. Mound, MN: American Society of Temporomandibular Joint Surgeons; 2001. Available at: http://www.astmjs.org/final%20guidelines-04-27-2005.pdf. Accessed January 12, 2007.

69Laudenbach JM, Stoopler ET. Temporomandibular disorders: A guide for the primary care physician. Internet J Family Pract. 2003;2(2).

70Hall HD, Indresano AT, Kirk WS, Dietrich MS. Prospective multicenter comparison of 4 temporomandibular joint operations. J Oral Maxillofac Surg. 2005;63(8):1174-1179.

71Holm A-K, Axelsson, S, Bondemark L, et al. Malocclusions and orthodontic treatment in a health perspective. A systemic review. Summary and Conclusions. Stockholm, Sweden: Swedish Council on Technology Assessment in Health Care (SBU); October 2005.

72McKenna SJ. Modified mandibular condylotomy. Oral Maxillofacial Surg Clin N Am. 2006;18(3):369-381.

73Limchaichana N, Petersson A, Rohlin M. The efficacy of magnetic resonance imaging in the diagnosis of degenerative and inflammatory temporomandibular joint disorders: A systematic literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(4):521-536.

74Wolford LM. Factors to consider in joint prosthesis systems. Proc (Bayl Univ Med Cent). 2006;19(3):232-238. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1484531. Accessed January 16, 2007.

75U.S. Food and Drug Administration (FDA), Center for Devices and Radiologic Health (CDRH). Total temporomandibular joint replacement system - P020016. New device approval. Rockville, MD: FDA; September 21, 2005. Available at: http://www.fda.gov/cdrh/mda/docs/p020016.html. Accessed February 9, 2007.

76U.S. Food and Drug Administration (FDA), Center for Devices and Radiologic Health (CDRH). W. Lorez Total TMJ Replacement System. Summary of Safety and Effectiveness Data. PMA No. P020016. Rockville, MD: FDA; September 21, 2005.

77Australia and New Zealand Horizon Scanning Network (ANZHSN). W. Lorenz total temporomandibular joint replacement system. Horizon Scanning Technology Prioritising Summaries. Canberra, ACT: Australian Government, Department of Health and Ageing; March 2006.

78Turner JA, Mancl L, Aaron LA. Short- and long-term efficacy of brief cognitive-behavioral therapy for patients with chronic temporomandibular disorder pain: A randomized, controlled trial. Pain. 2006;121(3):181-194.

79Mercuri LG, Edibam NR, Giobbie-Hurder A. Fourteen-year follow-up of a patient-fitted total temporomandibular joint reconstruction system. J Oral Maxillofac Surg. 2007;65(6):1140-1148.

80da Cunha LA, Firoozmand LM, da Silva AP, et al. Efficacy of low-level laser therapy in the treatment of temporomandibular disorder. Int Dent J. 2008;58(4):213-217.

81Emshoff R, Bösch R, Pümpel E, et al. Low-level laser therapy for treatment of temporomandibular joint pain: A double-blind and placebo-controlled trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(4):452-456.

82Castrillon EE, Cairns BE, Ernberg M, et al. Effect of peripheral NMDA receptor blockade with ketamine on chronic myofascial pain in temporomandibular disorder patients: A randomized, double-blinded, placebo-controlled trial. J Orofac Pain. 2008;22(2):122-130.

83Ayesh EE, Jensen TS, Svensson P. Effects of intra-articular ketamine on pain and somatosensory function in temporomandibular joint arthralgia patients. Pain. 2008;137(2):286-294.

84Christensen RW. TMJ partial joint replacement prospective study. Final PMA post-approval study report. Clinical Protocol TMJ-96-001. Golden, CO: TMJ Implants, Inc.; December 24, 2008.

85National Institute for Health and Clinical Excellence (NICE). Total prosthetic replacement of the temporomandibular joint. Interventional Procedure Guidance 329. London, UK: NICE; December 2009.

86Sin G, Banks R. Botulinum toxin A for the treatment of trigeminal neuralgia and temporomandibular joint dysfunction: A review of the clinical-effectiveness. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health (CADTH): 2009.

87Guo C, Shi Z, Revington P. Arthrocentesis and lavage for treating temporomandibular joint disorders. Cochrane Database Syst Rev. 2009;(4):CD004973.

88Luther F, Layton S, McDonald F. Orthodontics for treating temporomandibular joint (TMJ) disorders. Cochrane Database Syst Rev. 2010;(7):CD006541.

89Mujakperuo HR, Watson M, Morrison R, Macfarlane TV. Pharmacological interventions for pain in patients with temporomandibular disorders. Cochrane Database Syst Rev. 2010;(10):CD004715.

90Majid OW. Clinical use of botulinum toxins in oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 2010;39(3):197-207.

91Venezian GC, da Silva MA, Mazzetto RG, Mazzetto MO. Low level laser effects on pain to palpation and electromyographic activity in TMD patients: A double-blind, randomized, placebo-controlled study. Cranio. 2010;28(2):84-91.

92Manfredini D, Piccotti F, Guarda-Nardini L. Hyaluronic acid in the treatment of TMJ disorders: A systematic review of the literature. Cranio. 2010;28(3):166-176.

93Ribeiro-Rotta RF, Marques KD, Pacheco MJ, Leles CR. Do computed tomography and magnetic resonance imaging add to temporomandibular joint disorder treatment? A systematic review of diagnostic efficacy. J Oral Rehabil. 2011;38(2):120-135.

94Rigon M, Pereira LM, Bortoluzzi MC, et al. Arthroscopy for temporomandibular disorders. Cochrane Database Syst Rev. 2011;(5):CD006385

95American Academy of Oral and Maxillofacial Surgery (AAOMS). Parameters of Care: Clinical Practice Guidelines for Oral and Maxillofacial Surgeons (AAOMS Parcare 2012). 4th ed. AAOMS; 2012.

Revision Dates

Original policy: November 4, 2004
Updated: September 25, 2006; June 5, 2012
Revised: August 26, 2008; November 16, 2009; January 20, 2011; September 23, 2013
Last Medical Bulletin #0028 Update: August 27, 2013

This CPB is revised to state that dry needling is considered experimental and investigational for temporomandibular disorders.

Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.

*Current Procedural Terminology (CPT) 2010 copyright
2010 American Medical Association. All Rights Reserved.

Copyright 2001 - 2013 Aetna Inc.

Dental Clinical Policy Bulletins (2024)

References

Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 6459

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.